MN Study of Utility-controlled, Customer Sited Battery Storage

November 18, 2015 Legislative Energy Commission

Bill Grant, Deputy Commissioner

Lise Trudeau, Sr. Engineering Specialist

Energy Storage Study

Submitted Jan 1, 2014:

- Completed by Strategen Consulting and the Electric Power Research Institute for the Department of Commerce.
- Investigates the potential costs and benefits of installing utility-managed, grid-connected energy storage devices in residential and commercial buildings in Minnesota

Energy Storage Technologies

Electro-chemical

(Batteries)

Mechanical

(Flywheel)

Bulk Mechanical

(Compressed Air)

Thermal

(Ice/Hot Water)

Bulk Gravitational

(Pumped Hydro)

Transportation

(Electric Vehicles)

Images: Strategen

Energy Storage Technologies: Study Scope

Electro-chemical

(Batteries)

Mechanical

(Flywheel)

Bulk Mechanical

(Compressed Air)

Thermal

(Ice/Hot Water)

Bulk Gravitational

(Pumped Hydro)

Transportation

(Electric Vehicles)

Images: Strategen

Energy Storage Roles on the Grid

Energy storage is broad category including diverse technologies and benefits to the electric grid.

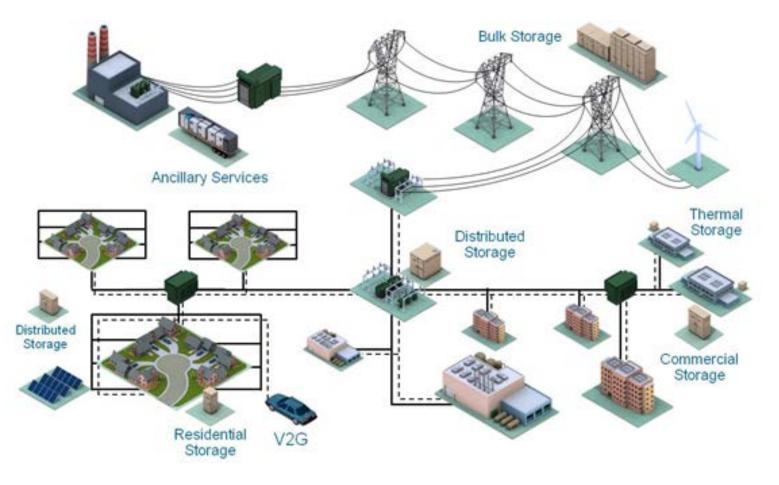
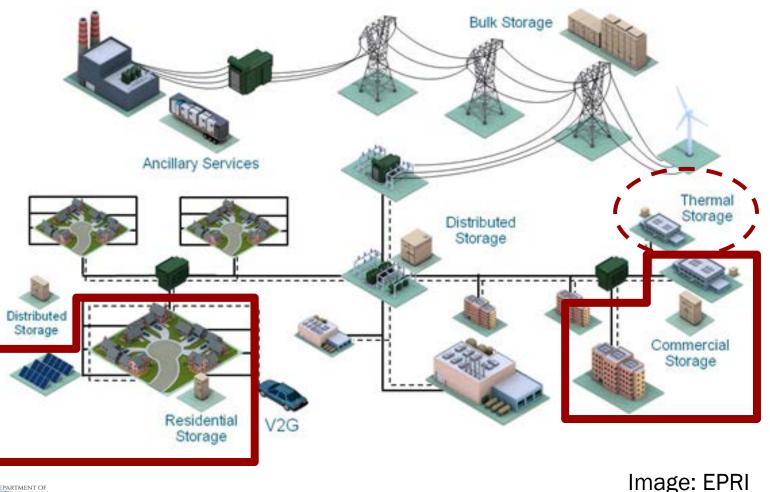



Image: EPRI

Energy Storage Roles on the Grid

Energy storage is broad category including diverse technologies and benefits to the electric grid.

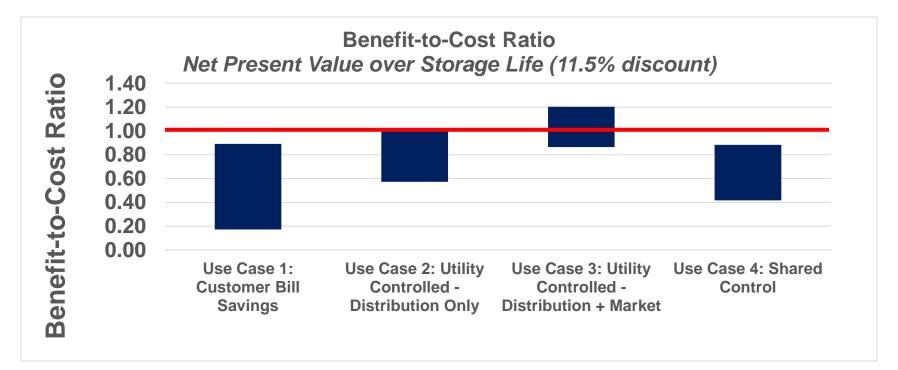
2013 **MN Energy Storage Study** Cost-Benefit analysis

Four use-cases modeled:

1: Customer controlled for bill savings

- Reducing peak demand charges;

2: Utility controlled for distribution


- deferring investment in distribution upgrades;
- Improving customer reliability and power quality;
- **3: Utility controlled for distribution and market benefits** (case 2 + MISO market participation)
 - Supporting both distribution and transmission grid services

4: Shared customer and utility controlled for bill savings and market revenue (hybrid of 1 & 3)

Providing additional value for unused storage capacity

2013 **MN Energy Storage Study** Key Findings

A benefit to cost ratio greater than one means that the *modeled* benefits exceed the project costs; in other words, the net present value (NPV) was greater than zero, and for this study had an return (IRR) greater than the 11.5% discount rate

2013 **MN Energy Storage Study** Key Findings

- Case 3: Utility-controlled storage with market participation showed the highest benefit to cost ratio by capturing more value streams:
 - Deferral of distribution upgrade cost
 - Participation in MISO market
 - Reduced wear and tear on peaking power plants
 - incentives for energy storage + solar PV

Opportunity for further study

- Study using site-specific, 15-minute data for various site profiles
- Effect of MISO Ancillary Service market rules
- Declining cost of storage
 vs. ITC expiration for pairing w/ solar PV
- Combined value streams
 - peak shaving, ancillary services, backup power

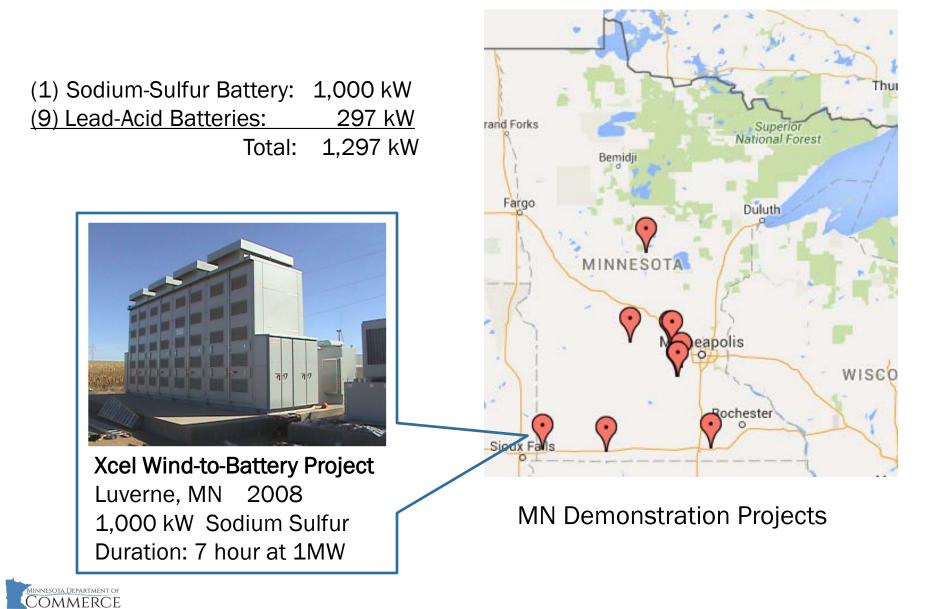
Where could storage add value?

- Resiliency: backup for critical infrastructure (water supply & wastewater treatment, grocery stores)
- Cost: Demand charge reduction for high peaking customers
- Emerging market: Low-carbon microgrids

Technical Resources

- Large projects:
 - Energy Storage Technology Advancement Partnership (ESTAP)
 - Sandia National Labs & CESA
 - Disseminate information (eg. ISO markets)
 - Facilitate partnerships
- Small projects:
 - Resilient Power Project
 - Clean Energy Group

Information Resources


Energy Storage 101: a quick reference handbook, U of MN, Energy Transition Lab, July 2015

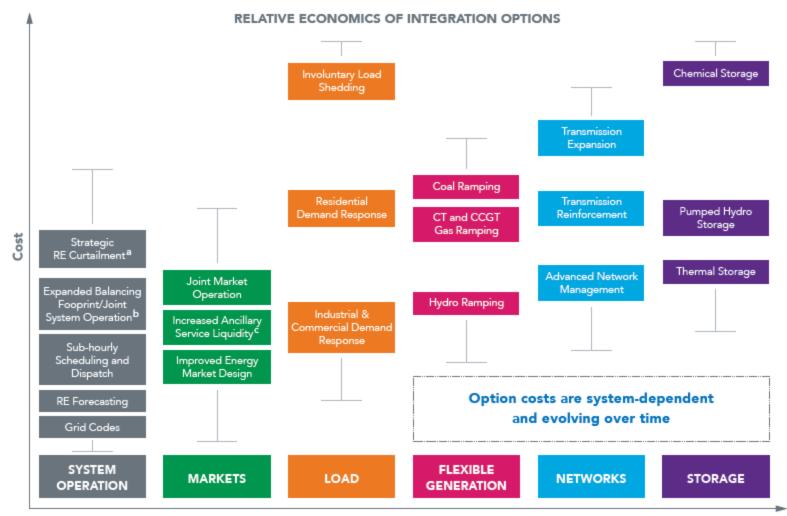
<u>White Paper Analysis of Utility-Managed, On-Site</u> <u>Energy Storage in Minnesota</u>, Strategen and EPRI for MN Dept of Commerce, Jan 2014

DOE Global Energy Storage Database

DOE Energy Storage Database

Energy Storage in MN

Bill Grant, Deputy Commissioner Lise Trudeau, Sr. Engineering Specialist



mn.gov/commerce/energy

Additional Resources

Energy Storage Roles on the Grid

Type of Intervention

Source: NREL & 21st Century Power Partnership (2014) http://www.nrel.gov/docs/fy14osti/61721.pdf

Energy Storage Technologies

Notes: kW = kilowatt, NiCd = nickel cadmium, NiMH = nickel metal hydride, NiZn = nickel zinc. © E Source; data from Sandia National Laboratories

Source: David Podorson, E Source (2014) http://www.esource.com/ES-WP-18/GIWHs

MN Demonstration Projects - Proposed

Xcel Belle Plaine Battery Project

- 2 MW (6 MWh) Storage + 1 MW Solar PV
- Areas of study:
 - Distribution capacity deferral, Solar PV integration
 - Explore multiple value streams: Volt/Var control, Power Quality, MISO market participation
- Details: 2015 Biennial Report Distribution Grid Modernization, 10/30/2015, Docket: 15-439

