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Water Use

2 to 10 million gallons per well

44 Billion Gal/yr 2011, 2012.

1% of national water consumption.

Locally 10% - 30% or more.

EPA (data from FracFocus)

e Median reuse of water 5%
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Life Cycle Upstream Only
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Figure 17.3 = Water use for primary energy production
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Table 2 Water intensity for extraction, processing, and electricity generation of different energy sources

Water for extraction

Water for extraction and

Water consumption

(L/G], processing (L/GJ, intensity of electricity
Energy source (data source) gallons/MMBTU) gallons/MMBTU) generation (L/MWh)?
Natural gas, conventional (42, 50) 0.7,0.2 6.7, 1.9 See below
Natural gas, unconventional (47-49) 8.6,2.4 15,4.1 See below
Natural gas combined cycle (once through) See above See above 520
Natural gas combined cycle (closed loop) See above See above 850
Pulverized coal (once through) (47-49) 9.0,2.5 27,7.5 1,400
Pulverized coal (closed loop) (47-49) 9.0,2.5 27,7.5 1,900
Saudi Arabian crude (47) 79, 22 110, 32 NA
Oil shale (51) 200, 57 240, 67 NA
Oil sands (47) NA 110, 31 NA
Nuclear (once through) (47-49) 14, 4 47,13 1,700
Corn ethanol (unirrigated) (47, 48) 300, 83 430, 119 2,100
Corn ethanol (irrigated) (47, 48) 14,000, 3,800 14,000, 3,800 16,000
Solar photovoltaic (47-49) 0,0 0,0 10
Concentrated solar powerb (47, 48) NA NA 3,100
Wind? 0,0 0,0 -




Figure 17.13 = Water use for energy production in the United States in the
New Policies Scenario
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Water Contamination

* Can fracking fluids reach aquifers?
e Can natural gas reach aquifers?

e Can there be spills that affect surface water?



Figure 2: Scaled Distance From Surface to a Gas Shale at 7200 ft (~2200 m)
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Well barrier/integrity failure

* Values from different studies are all over the map
* Anywhere from 1.9% to 75% (Davies et al. 2014)
e Estimated at ~6% of wells for Marcellus (from

regulators’ data)

Elevated pressures during fracking are well above the
value shown to cause damage.
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Spills

 Chemicals used in fracking fluid
 Mixed fracking fluid
* Flowback water

 Produced water

Contaminants: BTEX, Cl, Na, NORM, crude, among
others

Sources: Trucks, holding ponds, containers, pipelines.



Spills

* Colorado: 1 spill per 100 wells
* Pennsylvania: 0.4 to 12.2 spills per 100 wells

EPA, 2015.

Very little data, not segregated by kind of spill.



We did not find evidence that these mechanisms have led to widespread,
systemic impacts on drinking water resources in the United States. Of the
potential mechanisms identified in this report, we found specific instances
where one or more mechanisms led to impacts on drinking water resources,
including contamination of drinking water wells. The number of identified cases,

however, was small compared to the number of hydraulically fractured wells.

U.S. EPA 2015



Water Contamination

e Can fracking fluids reach aquifers? (most likely no)

» Can natural gas reach aquifers? (most likely yes, in
some cases)

e Can there be spills that affect surface water? (yes)



Greenhouse Gases

* Shale gas: better or worse than coal?

* |sshale gas a good “bridge fuel”

Agreement:
CO2 emissions only about half that of coal
Disagreement:

Methane emissions can offset those gains



Reasons for disagreement

 Quantity of methane leaked
* Primary use of the fuel

e GWP and time horizon



—Globally averaged methane concentrations
—Deseasonalized trend curve




Leaks in distribution systems
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Emissions magnitude (g CH,/year)
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How much methane leaks out?

0% 2% 4% 6% 8%
| | | |
Brandt et al. 2013. low 3.6
US average high 7.1
Miller et al. 2013, US average | 3.6 or more

Allen et al. 2013, US average

Karion et al. 2012, shale gas

Petron et al. 2012
tight-sands gas

low total = 1.7
Howarth et al. 2011 _J _ total = 6
conventional gas high o

— 3.6

|
Howarth et al. 2011 _J ow total = 3.6
shale gas high

3.6 total =7.9

B Upstream emissions
[ 1 Downstream emissions

[__] Total emissions (when not estimated separately)



Grams Carbon per MJ

Grams Carbon per MJ
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Timescale 20-year  100-year

Publication considered GWP GWP
IPCC [35] 20 and 100 years 56 21
Hayhoe et al. [2] 0-100 years NA NA
Lelieveld et al. [3] 20 and 100 years 56 21
Jamarillo et al. [4] 100 years — 21
IPCC [36] 20 and 100 years 72 25
Shindell et al. [37] 20 and 100 years 105 33
Howarth et al. [8] 20 and 100 years 105 33
Hughes [20] 20 and 100 years 105 33
Venkatesh et al. [12] 100 years — 25
Jiang et al. [13] 100 years - 25
Wigley [38] 0-100 years NA NA
Stephenson et al. [14] 100 years — 25
Hultman et al. [15] 20 and 100 years 72, 105 25, 44
Skone et al. [39] 100 years — 25
Burnham et al. [16] 100 years — 25
Cathles et al. [17] 100 years — 25
Alvarez et al. [40] 0-100 years NA NA
IPCC [34] 10, 20, and 100 years 86 34

Brandt et al. [29]

100 years

Howarth, 2014
25
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Why 20 years instead of 1007?
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Flowback emissions (scf of methane)

Green completions

100,000,000
10,000,000 |~ B Potential
S HEN Measured
1,000,000 —
100,000
10,000 |-
1,000 —
100
10
1
I ATV B SRR S P SN RS e IS I SN SN Iy
PR ST STTFEERIIIIIIISESSs TS

Gas well completion site code




Air Pollution

* Where do emissions come from?

e |s it better or worse than coal?



Glossary

VOCs
BTEX

PM
Ozone Precursors

Respirable Silica
NOXx

Mercury
H,S
SO

X
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Preproduction

Methane

BTEX

Non-Methane Volatile
Organic Compounds

NO,

PM,.

Hydrogen
Sulfide

Silica

Diesel exhaust from machinery that clear well
pads and creates access routes.

Diesel exhaust from mixing and pumping
equipment.

Diesel engines emit PM2.5, NOx and NMVOCs
Truck traffic also produces PM10.

Chemicals in the fluid and flowback contain
volatile compounds. Stored in open pits and

containers.

Respirable Silica found to be 10x higher than
limits on 33% of studied sites (N=111).

Flaring.
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Flaring:

* Initial production before gas wells connected to pipelines.
* In the Bakken, ~30% of natural gas is flared indefinitely ( 36% in Dec 2013).
Goal is 15% in 1Q 2016

Contributes to fine particle formation.

* Produces Ozone precursors, including formaldehyde if combustion is
incomplete.

Emits BTEX compunds.

Initial flaring is due to be eliminated with new EPA rules for “green
completions”



Producti -
S Compressors (wellhead and compressor stations)

Well-pad equipment leaks

Methane Flaring emissions.

BTEX In PA: 91-97% of VOCs, 59-68% of

NOx, 64-84% of PM2.5, and 40-64% of SOx emissions

Non-Methane Volatile
Organic Compounds




Data Paucity

* Health effects studies are scarce

* O, often monitored only in urban areas

e Chemistry of emissions not fully understood
* Pre-drilling baselines not established

* Big differences in “bottom-up” vs “top-down” studies



Burning Coal vs Natural Gas for Electricity

Coal problems:
SO,: leading source, public health, acid rain.
NOx: Ozone, chronic respiratory diseases.

PM: Bronchitis, asthma, premature death,
haze.

Mercury: Highly toxic, >50% of emissions,
brain damage, heart problems



Burning Coal vs Natural Gas for Electricity

The air-quality benefits of switching from
coal to natural gas are extensive for
pollutants such as mercury and sulfur
dioxide (SO2). These benefits may be less
so for nitrogen oxides (NOx)... unless
combined-cycle technology is used.

Moore et al. 2014

Particulate matter is also greatly reduced.
“Clean Coal” technologies can reduce SO2 by ~50% NOx by ~70% and PM by ~99%



Air Pollution

e Where do emissions come from?
 |s it better or worse than coal?

Much better (except if you live by a well)



Induced Seismicity

* Due to wastewater injection
* Due to hydraulic fracturing

 Why some places and not others?



Dramatic increase
In seismicity
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magnitude 2.5+ earthquakes
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Millions of barrels
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Why some places and not others?

e Little to no induced seismicity in the Bakken
* Regional stress field

* Orientation of faults

* Low pre-pumping pressures

* We don’t really know



Questions



