

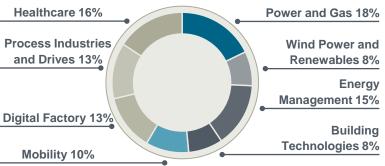
June 30 Legislative Energy Commission Meeting Modernization of the Grid

Ken Geisler, VP Strategy Siemens Smart Grid US/Canada

> 8/18/2014 Minneapolis, Minnesota

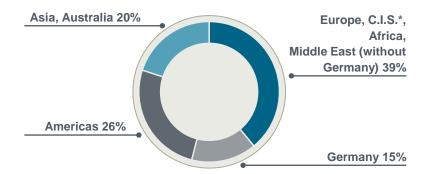
Key figures for fiscal 2014 Siemens at a glance

(continuing operations; in millions of €, except where otherwise stated)	FY 2014	FY 2013	% Change ¹
Volume			
Orders	78,350	79,755	1%
Revenue	71,920	73,445	1%
Profitability and capital efficiency		40 - 20	
Profitability and capital efficiency Return on capital employed (ROCE)	17.2%	13.7%	


Capital structure and liquidity

Free cash flow	5,399	5,378	
(in thousands)	0 00 0014	0 00 0040	
(III thousands)	Sep. 30, 2014	Sep. 30, 2013	
Employees			
Total	343	348	
Germany	115	117	
Outside Germany	229	231	

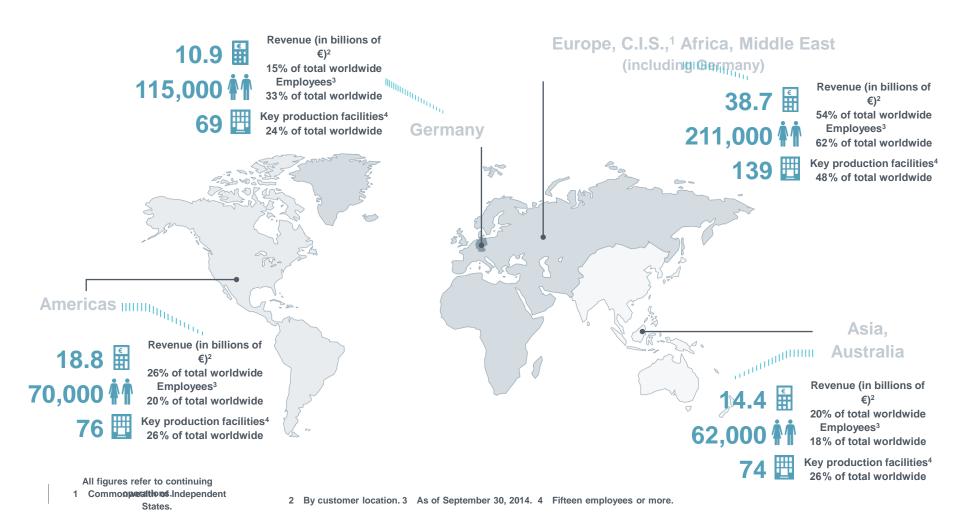
1 Comparable, excluding currency translation and portfolio effects.


2 Continuing and discontinued operations.

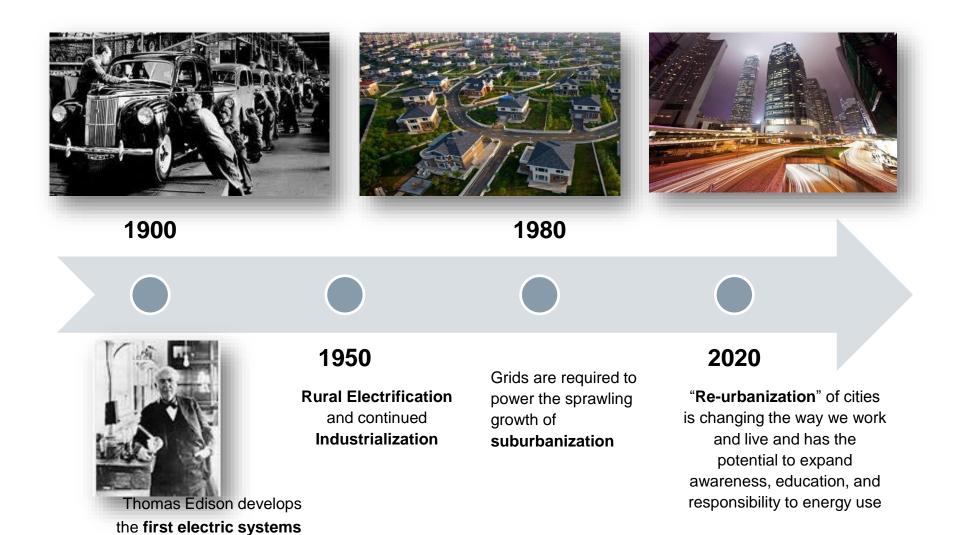
Revenue by industrial business

Not included: Financial Services (SFS)

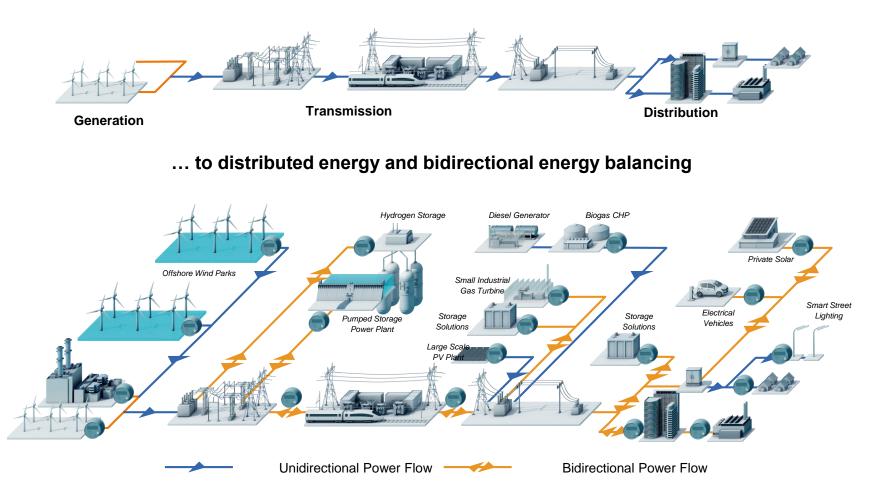
Revenue by region



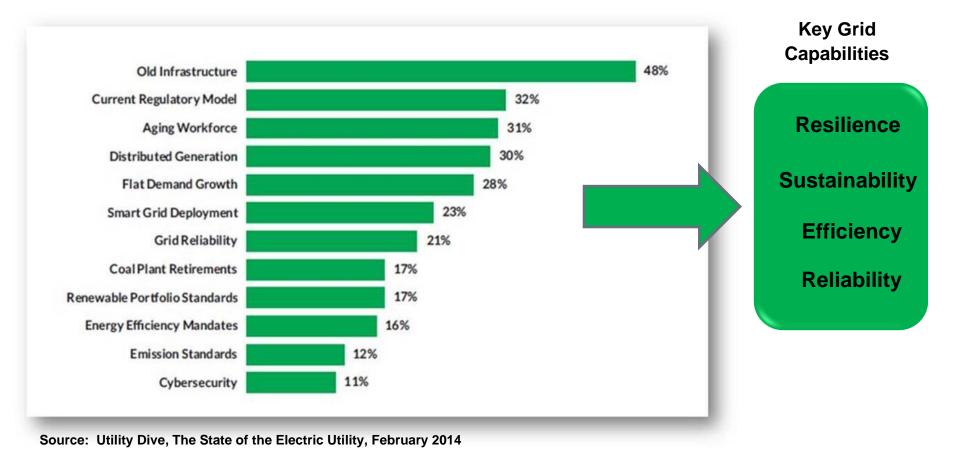
* Commonwealth of Independent States


SIEMENS

Global presence Close to customers all over the world

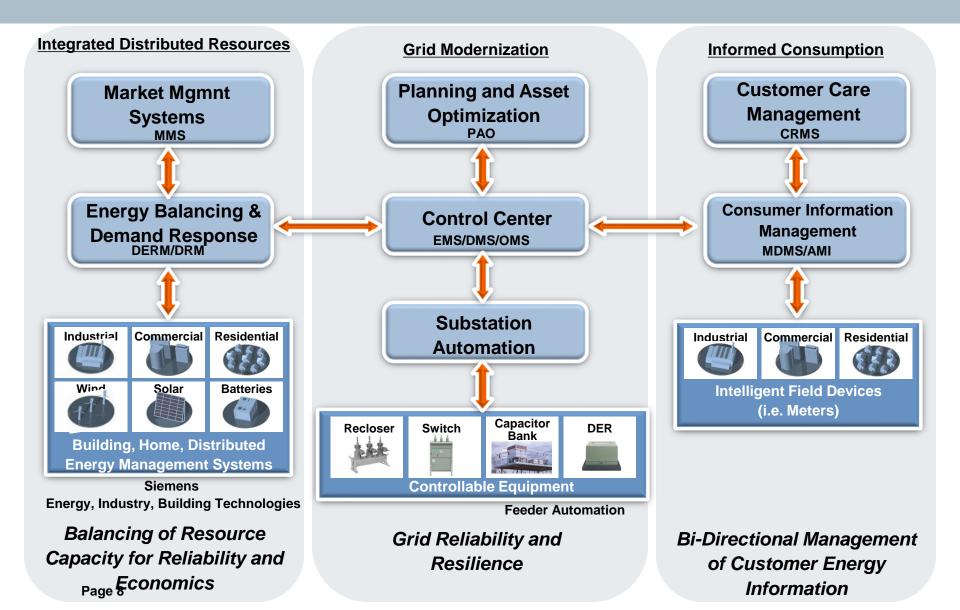

Evolution of the Energy Grid

Decentralization of Grid Design and Generation


From centralized, unidirectional grid ...

The State of the Utility Market

Key Challenges identified by sampling of 527 IOU/Muni/Coops



Grid Capabilities and Applied Technologies

Grid Capability	Characteristics	Applied Technologies	
Resilience	Decentralized Design, Firm Local Generation, Multi-utility Integration, Critical Infrastructure Support	Decentralized Gas/Digester Generation, Combined Heat and Power, Micro-grids, Community Storage, Integrated Building/Rail/Water/Public Safety, Community Notification	kegulated usiness del
Sustainability	Variable Local Resources, Energy Use Follows Available Generation, Two-way Flow of Energy	Integration of Variable Renewable Resources, Demand Management, Distributed Energy Resource Management, Storage, Adaptive Protection	Outside Regulated Utility Business Model
Efficiency	Active Grid , Visibility, Automate Outage Response, Streamline Operations	Distribution Management, Substation Automation, Feeder Automation, Voltage/VAR Management, AMI/Smart Metering, Social Media	Within Regulated Utility Business Model
Reliability	Passive grid, One-way Distribution of Power, Reactive Problem Response	Centralized Generation, Radial Distribution, Reactive Trouble Dispatch and Outage Management	Within Regr Utility Busi Model

SIEMENS

Integrated Resilient Grid Solutions

Efficiency Technologies & Key Elements

Grid Visibility

Automation

Problem Avoidance

Volt/VAr Management

"Fleet" Management

ANEC, VA Feeder Automation "Self-Healing" Grid

Hawaiian Electric, HI

Substation Automation "Self-Healing" Grid

ONCOR, TX

Control Center Advanced Distribution Management

A&N Electric Cooperative Feeder automation (SDFA)

ANEC's decentralized Distribution Feeder Automation project aims to increase the reliability of power supply to its customers, by automating the fault detection, location, and isolation tasks and automatically restores (FLISR) service to viable sections of line, thus minimizing outage time and dispatch expenses.

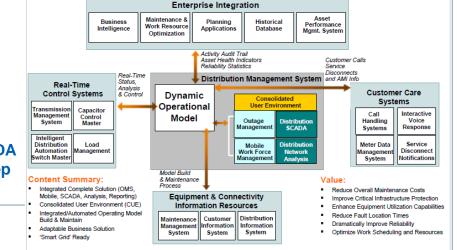
Key features	 SIPROTEC 7SJ80 protection relay IEC61850 communication protocol RuggedComm Hardened Wireless Broadband WiMAX 	SCADA DIGSI Configuration Software
Customer benefits	 High speed FLISR functionality to greatly Switching to optimize feeders without ope Increased reaction time Maximize stable supply of power Rapid feeder reconfiguration Scalable 	•

Self- Healing Grid Automation (SICAM) Hawaiian Electric Company, Oahu, USA

 Automation of 46kV sub-transmission system

SIEMENS

- To address overload & reliability issues in East Oahu
- Automated high-load distribution circuits to feed sections of East Oahu
- Creates intelligent decentralized hierarchical control systems
- Substations & devices become intelligent agents supervised by the control center, providing robust contingency situations, maintenance switching, fault isolation & restoration



Oncor Smart Grid Applied Systems Program (ADMS)

The Smart Grid Applied Systems program at Oncor focuses on the modernization, automation and integration of the Distribution Operations Control Centers. It is designed to leverage the significant investment that Oncor has already made in initiatives for Advanced Metering and Feeder Automation. The program, which includes Mobile Workforce Management, Outage Management, Distribution SCADA and Distribution Network Analysis, is a significant step in an overall transition to a Smart Grid.

A cingle highly officient user interface for

Key features	 A single fighty efficient user interface for all DMS functions Visually correlates and integrates large amounts of field information Supports management of the distribution network and mobile work crews integrated with control and load/voltage conditions Utilizes all available information from Distribution Automation and Automated Metering Infrastructure sources Establishes a generalized model-based integration platform for simplified integration with other enterprise systems 		
Customer benefits	 Significantly improved operator efficiency Cost-effective D-SCADA extension Proactive avoidance and correction of equipment overloads and low voltage conditions Increased utilization of existing assets 		

Sustainability and Resiliency Projects

Grid Connected Energy Districts

Integrated Renewable and Firm Generation

Storage

Distributed Energy Resource Management

Critical Infrastructure Support

ConEdison, NY Distributed Resource Management

Parker Ranch, HI Community Sustainability

Co-op City, NY Community Micro-grid

Pantex, TX

Military Sustainability

SGDP Major Accomplishments

SIEMENS

- Developed secure interoperable platform
 - Integrate legacy & smart grid data systems with established standards
 - Provide wide area situational awareness of interconnected grid assets
 - Support for decision aid tool to enable targeted demand response
- Developed blueprint for urban, underground smart grid deployment and open possibilities to establish competitive markets for energy and energy-related value added services
- Developed Secured Web Services for internal and external communication with third party providers

Wide Area Situational Awareness

Parker Ranch, Hawaii (Microgrid Feasibility Consulting)

Microgrid Implementation Stages

- 1) Immediate Ranch Projects 3-5MW
- 2) Community Microgrid ~20MW
- 3) Strategic Concepts >50MW

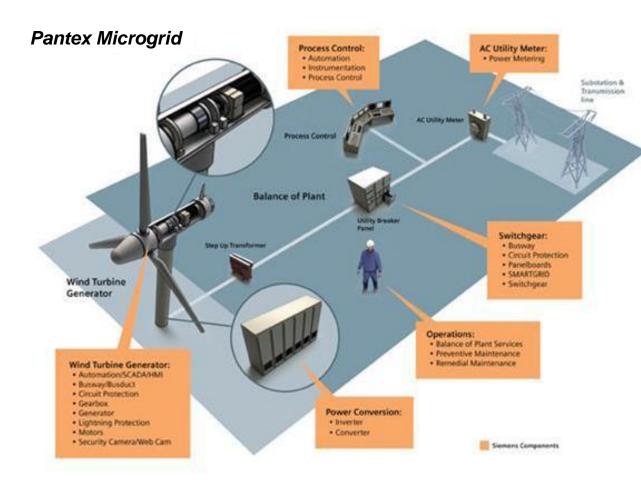
 250,000 Acres, including the city of Waimea (~7,000 residents)

SIEMENS

- 175 Miles of water pipeline, with 4 reservoirs, 2 wastewater lift stations with 40hp motors
- Hospital, Commercial area, Industrial Park
- Potential and preference for renewable resources (solar, wind, tidal water, etc.)
- Desire for integration with local utility
- Focused on environmental and economic strategic goals

Decentralized Resilient Energy-Districts

Revealed by Hurricane Sandy


Co-Op City, Bronx, NYC

SIEMENS

- 14,000 apartments
- 35 high-rise buildings
- 40MW steam turbine generator, plus CHP
- Operates on a micro grid
- Retained power for 60,000 residents

SIEMENS

Pantex, Military Microgrid

PROJECT BENEFITS:

Cost-effective Microgrid to provide Energy Security for the NNSA Pantex facility in Texas by integrating high availability, renewable Wind power.

11.5 MW total power generation from five reliable Siemens 2.3 MW Wind turbines.

Uptime ensured with real-time monitoring from Siemens warranty & maintenance team, supporting over 4.6 GW of wind power generation across the US.

Microgrid approach includes utility interconnect to enable excess power sale to local grid.

Developed and financed via Siemens Energy Savings Performance Contract (ESPC) with DoE. Low cost financing without leveraging US Federal tax incentives

Energy savings for NNSA Pantex 100% funds the project, including multi-year maintenance.

Siemens team includes TVIG, an awardwinning Veteran-owned small business. © Siemens AG 2013 All rights reserved.

Thank you!

Ken Geisler

Vice President, Strategy Smart Grid Energy Management Division Siemens Industry, Inc

E-mail: <u>ken.geisler@siemens.com</u>