

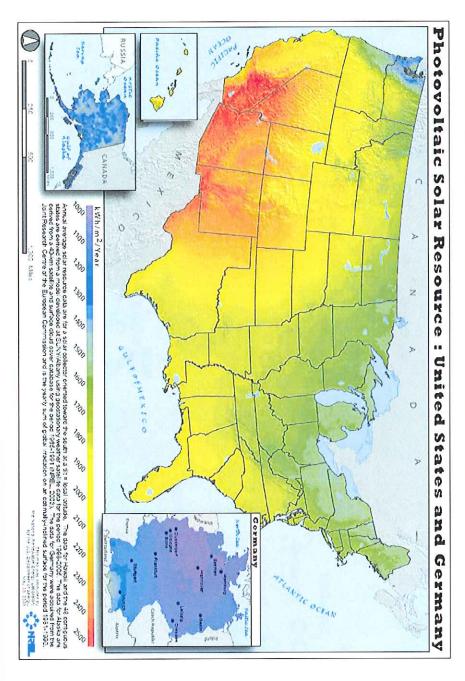
Solar Energy Policies and Finance Creating a Successful Market Presentation for the Minnesota State Legislature

Jason Coughlin
NREL Technical Lead for the Twin Cities
Solar America Cities Program
October 2009

Solar America Cities Reporting

2009 Minnesota Energy Policy Omnibus (S.F. 550) requires Solar America Cities of Minneapolis and Saint Paul to submit a report to Legislative Energy Commission on October 2009 and October 2010 outlining strategies to accelerate the adoption of solar thermal and solar electric technologies in Minnesota.

DOE Solar America Cities Initiative


Twin Cities is one of 25 cities at the forefront of solar development in the country

Solar Myths

Myth: Minnesota does not get enough sun to use PV technologies.

Fact: Yes it does. In fact, the U.S. in general gets more sun than Germany, the world leader in PV installations.

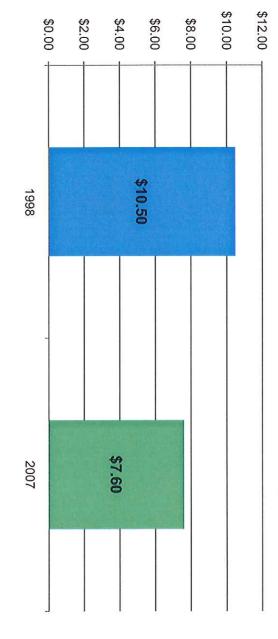
Solar Myths

Myth: The technology is still being developed.

Fact: PV technology, while continuously being improved, is effective enough to use now.

Photo courtesy of NREL

Solar Myths


Myth: Solar is just too expensive.

Fact: Declining PV equipment prices, innovative financing structures such as

making solar affordable in many areas Power Purchase Agreements (PPA), and state/federal incentives are

Installed costs per watt are falling.

2009 Anecdotes

\$6/watt Presidential \$4/watt \\ \text{utility scale}

Source: http://eetd.lbl.gov/ea/emp/reports/lbnl-1516e-ppt.pdf Tracking the Sun: The installed costs of photovoltaics in the US from 1997-2008 Lawrence Berkeley National Laboratory. February 2009.

But why solar?

- Unlimited resource which can be used to generate electricity, heat homes and water, and power automobiles.
- Can site solar systems close to demand reducing transmission losses and lowering transmission and distribution costs.
- Can be combined with batteries or other storage mechanism to deploy on demand.
- Increasingly cost-competitive.

A number of barriers still exist

Regulatory Issues

- State policies to promote solar energy installations
- Interacting with utilities

Financial Hurdles

Upfront investment can still be significant

ယ Lack of Public Awareness especially in cold climates

Solar is a proven technology with minimal operating risk

Procedural Issues

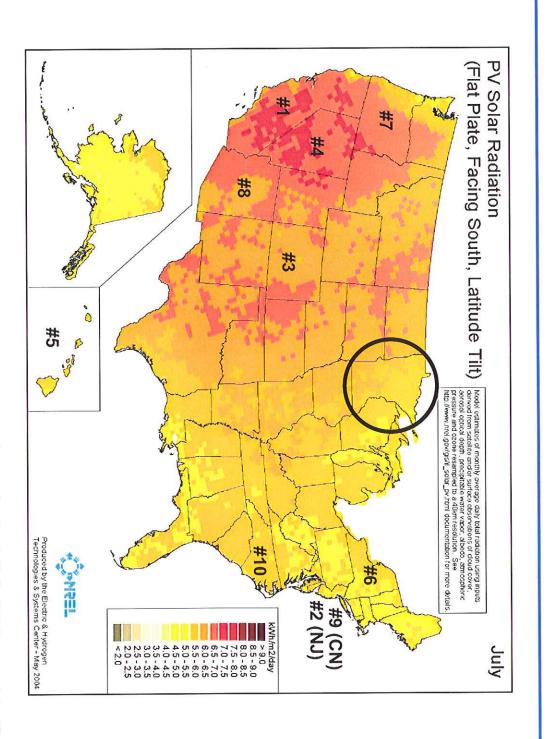
- **Building Codes and Standards**
- Protecting Solar Access

Qualified Workforce

Lack of qualified solar installers

Reaching new market segments

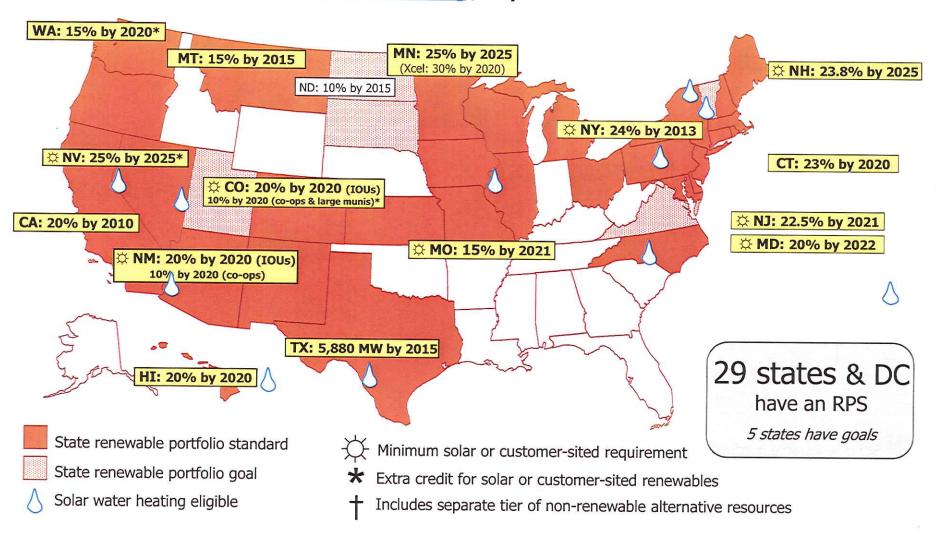
- Utility Scale Solar
- New Market Participants
- Community Solar

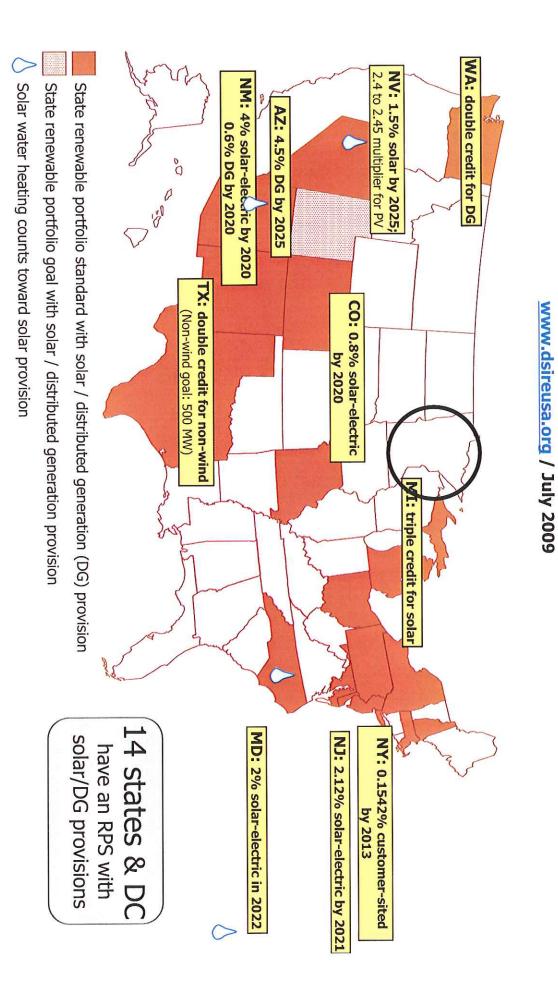

State Policy Environment

- 1. Policies at the state level make a <u>tremendous</u> difference on the level of installed capacity of solar energy.
- 2. Consistency of these policies is key so people can develop projects with greater certainty.
- 3. Quality of a state's **solar resource** not necessarily correlated to installed.
- 4. Renewable Portfolio Standards* with a carve-out for solar energy creates the opportunity for solar to compete against cheaper renewable energy technologies such as wind and biomass.
- 5. Solar Renewable Energy Certificates (SRECs) in certain states, such as New Jersey and Colorado, can be worth \$150-300/MWh.

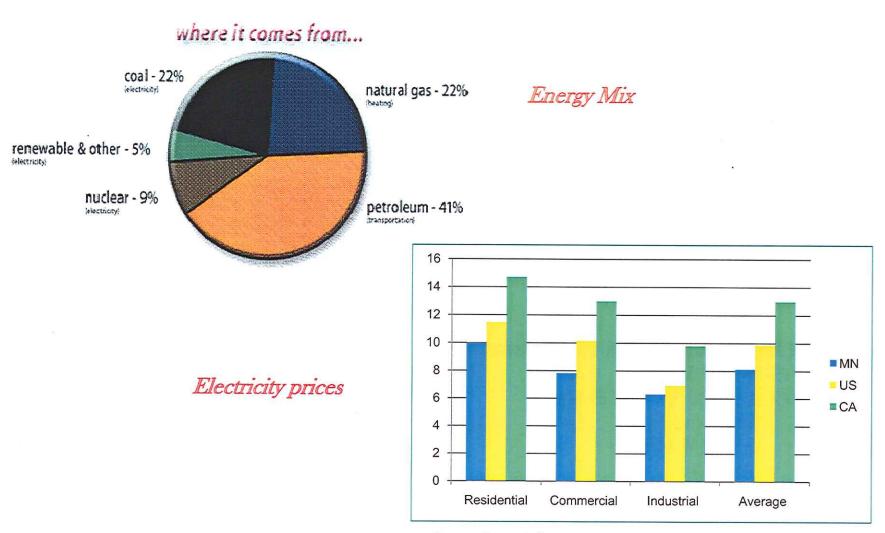
	2006	2007	2008
<u>State</u>			
California	71	87	178.6
New Jersey	18	17	22.5
Colorado	.9	12	21.6
Nevada	2.6	15	13.9
Hawaii	n/a	2.4	11.3
New York	2.7	4.4	7.0
Oregon	.5	1.1	6.6
Arizona	2.1	2.1	6.4
Connecticut	.5	1.8	5.3
North			
Carolina	n/a	n/a	4.0
Others	1.5	4.4	15.3
Total	102	150	292

Megawatts (MW) of new annual installed PV capacity Solar Energy Industry Association & Prometheus Institute http://www.seia.org/Year_in_Review_2008_Ir.pdf


Top ten states for installed capacity


Minnesota's resources at least as good as NJ, NY, CN and NC

Renewable Portfolio Standards


www.dsireusa.org / July 2009

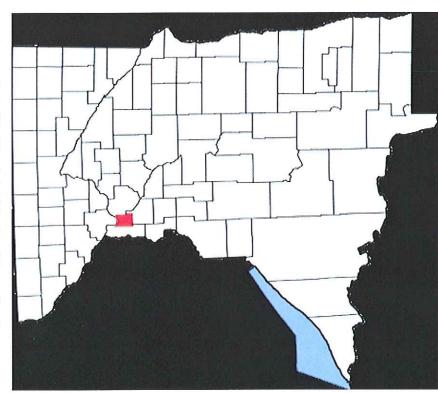
RPS Policies with Solar/DG Provisions

The Minnesota Energy Landscape

Source: Energy Information Administration, DOE. June 2009 data

The Minnesota Solar Landscape

energy in one day than the energy consumed by the state in an entire year. According to the MN State Energy Office, Minnesota receives more solar


Installed PV capacity in the state

- 313 PV installations in MN (avg. 4.6 kW)
- 1.4 MW of PV installed capacity in MN
- Largest system is 100 kW

Installed SHW capacity in the state is unknown but approximately 28 systems were installed since July 2009.

MN Renewable Portfolio Standard

- 25% by 2025
- 30% by 2020 for Xcel Energy
- 24% wind
- up to 1% solar
- 5% other

An area of solar PV within a footprint the size of Ramsey County would produce an equivalent amount of electricity as is consumed in Minnesota on an on-going basis. Map credit: David Benbennick.

Regulatory Issues - Utility Policies

1. Net Metering: "Spinning the meter backwards"

- The ability to net meter
- Compensation for net metering
- Minnesota authorizes net metering and utilities pay retail rates

Photo credit: AmericanProgress.org

2. Setting the net metering cap

- a low cap can penalize larger systems that would benefit from economies of scale and force customers to undersize their systems.
- Minnesota's net metering cap is 40 kW per system

3. Setting the maximum amount of distributed generation permitted within the utility's territory

No maximum established in Minnesota

4. REC Ownership

- RECS are critical to getting projects financed in many markets
- In Minnesota, ownership of RECs varies between utility and system owner.

5. Streamlining the interconnection process

- Systems up to 10 MW can interconnect in Minnesota
- MN interconnection process is rated unfavorably*

6. Feed in tariffs

*Freeing the Grid, October 2008. Produced by New Energy Choices, &IREC http://www.newenergychoices.org/uploads/FreeingTheGrid2008 report.pdf

Financial Barriers

High upfront costs limit the size of the solar energy market

- Before incentives, a 4 kW residential PV system can cost \$30,000-\$40,000 in Minnesota
- \$0.25-0.30 cents in certain locations The unsubsidized cost of electricity on a per kWh basis can be as much as
- competing against very low natural gas prices While much cheaper (in MN, \$10-12,000) most solar hot water systems are

offer a number of financial incentives To combat this high upfront cost, policy makers and utilities

- Federal Investment Tax Credits and Cash Grants
- Accelerated Depreciation for Commercial Systems
- Many states and utilities offer upfront rebates (up to 50% of the cost of the system)
- Ongoing payments based on electricity produced.
- State income tax credits
- Property tax exemptions
- Sales tax exemptions

the market. In addition, creative new financial mechanisms are expanding

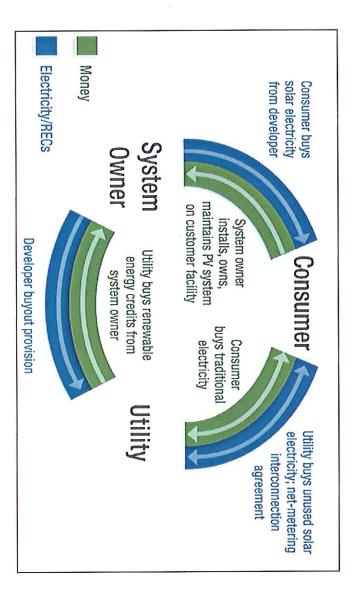
Minnesota Financial Incentives for Solar

State Incentives

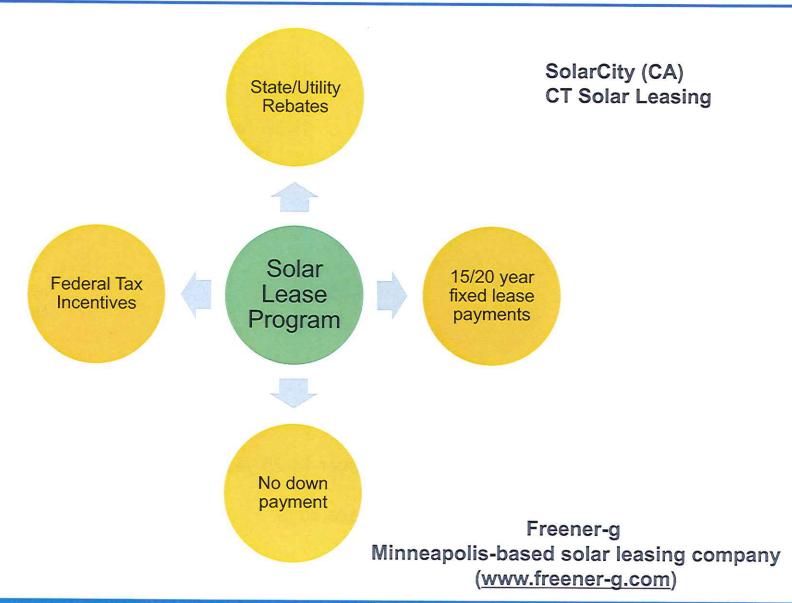
- Solar PV Rebates
 - **\$1.75-\$2.00/watt**
 - Up to 5 kW for a residential system
 - Up to 10 kW for small business system
- Solar Water Heating Rebates
 - Amount of rebate per system TBD
 - Draft guidelines
 - \$25/sq foot for residential with a \$2,000 maximum
 - \$15/sq ft for commercial/multi-family dwelling with a \$20,000 maximum

Various Utility Grants and Loan Programs

Xcel Energy's Renewable Development Grant Fund is one example


Various Utility Rebates

- Usually a \$/watt rebate with a cap on system size and/or amount
- Utility may take ownership of RECs in return for rebate
 - Minnesota Power
 - \$2 per watt through 2010 with a 2kW maximum
 - Great River Energy Coop
 - \$2 per watt through Dec 31, 2009 with a 2 kW maximum


Power Purchase Agreements

Third party financed power purchase agreements (PPA)

- Outside investor owns system and sells electricity to the host
- PV system is usually on the host's rooftop
- homeowners Hosts can be commercial entities, public entities, non-profits or
- More efficiently allocates and monetizes tax benefits
- No upfront capital cost for the host

Residential Solar Leasing

Property Tax Assessment Model

Address the high upfront cost

Property Tax model

- Assessment
- Based on special assessment districts
- County/city finances project
- Loan repaid via property taxes over 10-25 years
- Lien has priority over mortgage
- Some push back from mortgage lenders

Enabling Legislation

Transferability

(lien stays with

home)

New Mexico New York* Wisconsin Oklahoma Louisiana California Maryland Oregon Colorado Vermont Nevada Arizona* Virginia Hawaii Illinois Texas Florida Ohio

*pending

www.pacenow.org

Improving public awareness

Continued emphasis on outreach and education to communicate that solar is a low risk, commercial technology experiencing material reductions in the cost to purchase and install systems.

- High visibility demonstration projects
- Websites
- K-12 Renewable Energy Curriculum
- Solar Kiosks
- Solar Tour of Homes and Businesses
- Greater media coverage (TV, print, radio)
- Partnering with market allies trades, corporations,
- Fact Sheets
- Solar Conferences and Workshops
- Solar America Cities Program
- Solar Decathlon

Photos courtesy of the Solar America Cities program and DOE

Procedural Issues - Codes and Standards

Creating a Solar-Friendly Environment

- Implementing "Solar-Ready" building codes
- Revising building codes and standards, with input from the solar community, to increase the use of best practices in solar installations
- Streamlining and standardizing the permitting process within and across jurisdictions
- Reducing or eliminating solar permit fees, particular for small installations
- Passing solar access ordinances
- Preventing Home Owner Associations from discriminating against solar installations
- Educating building code officials about solar
- Creating policies to allow solar on historic buildings while still preserving the integrity of such sites

In fact, consider making it a requirement But don't ignore energy efficiency

Workforce Development

- Domestic renewable energy production offers significant job creation opportunities
- As the market expands rapidly in its early stages, a lack of qualified solar installers can lead to higher costs and quality issues.
- This creates the need for a number of training-related outreach activities

Photos courtesy of the Solar America Cities program

Utility Trends

Ownership Structures

Third party financed systems using PPA

Direct ownership of PV systems

Utility owned but distributed on leased rooftops

Opportunities for Utility Scale PV Systems

Source: SunEdison and NREL. Alamosa Colorado. 8.2 MW

New Participants in Facilitating Change

It is important to consider solar energy applications across a wide range of activities rather than a niche solution for homeowners

- Solar energy as a component of all infrastructure planning
- Local governments working with the community to develop solar programs
- Incorporating solar into district energy systems
- Attracting solar manufacturing to Minnesota
- Solar as a component of Urban Renewal initiatives
- Solar Recharging for Plug-in Vehicles
- Solar and Affordable Housing

Community Solar

- 1. This is not a Windsource program
- 2. One large PV system with many participants or subscribers
 - Option for those who want to do more than participate in a voluntary green power program but who can't afford to install their own PV system.
 - Option for building owners with poor solar resources (e.g. trees in the way)
 - Option for renters and condo owners
- 3. Benefit from cost savings due to the economies of scale of larger projects
- 4. More states are enacting policies to promote community solar by allowing participants to benefit from certain state tax credits (Utah) and electricity production incentives (Washington).

Summary

- Solar is ready today
- learn from State driven marketplace with lots of models to
- Technology constantly being enhanced
- Costs continue to fall
- Solar will benefit from any future carbon policies
- It is an industry that creates domestic jobs

	e.	
		•