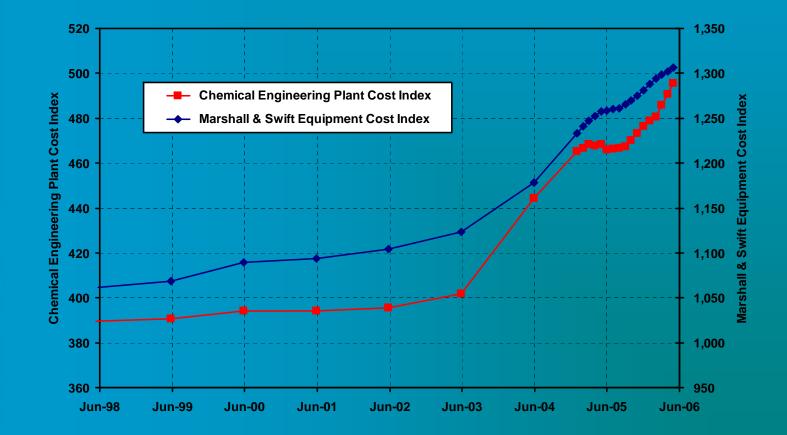
Economics of New Reactors and Alternatives

Jim Harding Harding Consulting March 2009 Minneapolis, Minnesota

How Did Keystone Address Economics?


- We started with recent Asian experience
 - Escalated at 4 percent real based on chemical plant experience
 - After publication, we found 8-15 percent real more correct
 - Borne out by new estimates from utilities and investment banking firms

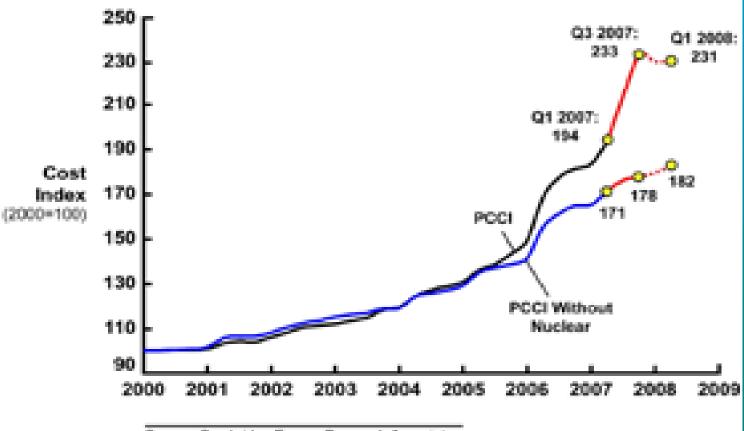
Asian Experience

Plant	MWe	COD	Yen@COD	2002\$s/kW	2007\$s/kW
Onagawa 3	825	Jan 2002	3.1 Billion	2409	3332
Genkai 3	1180	Feb 1994	4 Billion	2643	3656
Genkai 4	1180	Jul 1997	3.2 Billion	1960	2711
KK 3	1000	Jan 1993	3.2 Billion	2615	3617
KK 4	1000	Jan 1994	2.2 Billion	2609	3608
KK 6	1356	Jan 1996	4.2 Billion	2290	3167
KK 7	1356	Jan 1997	3.7 Billion	1957	2707
Y 5 (SK)	1000	Jan 2004		1700	2352
Y 6 (SK)	1000	Jan 2005		1656	2290
Average				2354	3257

Cost data from MIT 2003 study. Average does not include South Korean units, owing to labor rates. Real escalation from 2002-2007 at 4 percent/year. Avg is \$2950/kW w/SK.

We Estimated 4% Real Escalation Per Year, 2002-2007

Provided to Keystone panel by EPRI


Utility Data Suggests 8% Real Might Be More Realistic

Commodity	Esc 86-03	Esc 03-07	Ratio vs. History
Nickel	3.8%/yr	60.3%/yr	15.9x
Copper	3.3%/yr	69.2%/yr	21x
Cement	2.7%/yr	11.6%/yr	4.3x
Iron/Steel	1.2%/yr	19.6%/yr	16.3x
Heavy construction	2.2%/yr	10.5%/yr	4.8x

Source: American Electric Power

Nuclear-Specific Data Suggests 14% Real/Year

IHS/CERA Power Capital Costs Index With and Without Nuclear

Source: Cambridge Energy Research Associates.

The Differences are Significant

	0% Real	4% Real	8% Real	14% Real
Med overnight	\$4050/kW	\$5400/kW	\$7100/kW	\$9050/kW
High overnight	\$4540/kW	\$6050/kW	\$8000/kW	\$10150/kW
Med overnight	10.7 c/kWh	13.4 c/kWh	16.9 c/kWh	20.7 c/kWh
High overnight	11.7 c/kWh	14.7 c/kWh	18.6 c/kWh	23.0 c/kWh

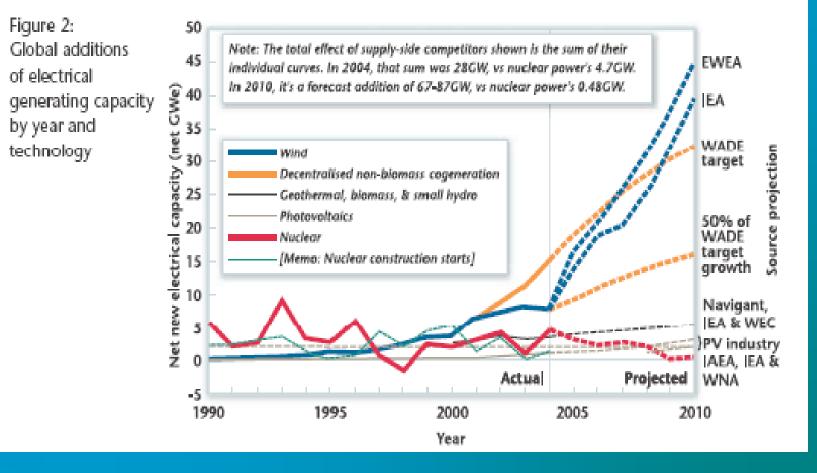
Future overnight cost estimates are in 2007 dollars, and are based on FP&L's recent Turkey Point 6/7 estimate. Electricity costs are levelized lifecycle costs, with interest and operating costs.

Recent Estimates

- Keystone \$3600-4000/kW; 8-11 cents/kWh
 - Real 2007 dollars, 5-6 years of construction, for operation in 2012/2013. Would be \$5600/kW (16-17 cents/kWh) at AEP escalation rate to 2013.
- Standard & Poor's \$4000/kW; 9-10 cents/kWh
 - Basis not stated; levelized fixed charge rate
 - Life cycle costs reflect Keystone O&M and fuel costs
- Moody's \$5000-7500/kW
 - Basis not stated; operating and fuel costs not estimated
- Florida Power & Light \$4200-6100/kW
 - Current dollars at COD converted to real 2007 dollars
- Puget Sound Energy \$10,000/kW
 - Basis not stated, but consistent with FP&L plus AEP escalation rate through completion.

Estimated Life Cycle Costs for Major Supply Options (2007\$s)

	Pulverized Coal	Gas (CCCT)	Eastern IGCC	Wind	Nuclear
Capital Cost (\$/kW)	3000-4000	1000	???	1700- 2500	5000
Capital charges (cents/kWh)	6.3	2.1	9.0	7.1-13	10.4
Delivered Fuel (cents/kW)	4.0	8.8	4.0	0	1.7
O&M (cents/kWh)	2.2	1.1	2.2	1	2.9
Cents/kWh	12.5	12.2	15.2	8-14	15.0


These are Standard & Poor's estimates, not mine. Essentially all the bottom line numbers have doubled in three years!

So What Happened to Solar Over this Period?

- It went down in cost, despite rising materials costs and supply-chain imbalances. Roughly 30 percent 9 percent eaten away by materials cost escalation
- Perceived as a disruptive technology (i.e., potentially cheaper than marginal operating and fuel costs of the existing system) in many parts of the world
 - How many new phone lines did MaBell build after the cell phone?
- Only disruptive technologies have unlimited growth potential they can cannibalize the existing system and grow quickly enough to address climate problems
- Efficiency resources meet that definition cost less than gas or coal.
 3x more carbon savings per dollar than new supplies.
- Photovoltaics are now disruptive in high cost regions grid parity may be a few years away for most of the world

Rapid Renewable Growth Worldwide

Recent worldwide annual growth in PV production capacity is +50% per year. Note that PV industry projections for 2005-2010 were nearly flat.

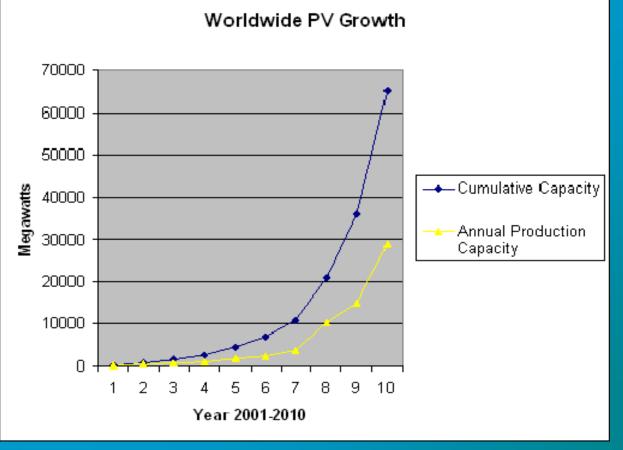
The Vendors Underestimated

	2001	2002	2003	2004	2005	2006	2007	06 to 07 Growth	Capacity YE07	Capacity YE08
US	100.3	120.6	103.0	138.7	153.1	179.6	266.1	17.3%	318.0	616.0
Japan	172.4	252.6	365.4	604.0	833.0	926.9	920.0	11.3%	1,482.5	1,707.5
Europe	73.9	122.1	200.2	311.8	472.6	680.3	1,062.8	43.9%	1,742.4	2,916.0
ROW	25.9	43.5	75.4	141.5	312.5	687.0	1,484.1	119.8%	2,633.0	5,009.5
	372.5	538.7	743.9	1,196.0	1,771.2	2,473.7	3,733.0	50.9%	6,175.9	10,249.0
% Thin Film	4.8%	3.2%	5.1%	5.1%	5.4%	6.9%	10.0%			

- Not flat through 2010, but 50% annual global growth
 - More poly-silicon available than commonly thought.
 - Increasing production of thin film
- Much growth has shifted to China, Taiwan, Malaysia
- US expansion is mainly thin film; also growing rapidly

Source: Travis Bradford, Solar Energy Market Update, April 2008. Units are MW of annual production capacity.

Fast Growing Production Capacity


Massive Plants expected through 2010:

- First Solar 450 MW (2009) *o* SolarWorld 1 GW (2010)
- United Solar 300 MW (2010) *o* Yingli 600 MW (2010) 0
- SunPower 500 MW + (2010)
- 0
- 0
- 0

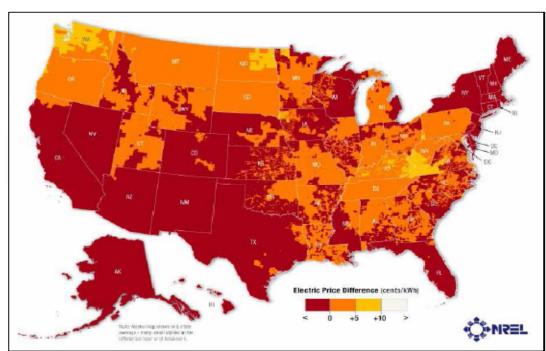
- Sharp 2 GW (2010) Ø Ever-Q 300 MW (2010)
- Kyocera 500 MW (2009) *o* Solland 500 MW (2010)
- Sanyo 350 MW (2008) *a* Schott 480 MW (2010)
- Suntech 1 GW + (2010) *o* Trina 660 MW (2010)
- Q-Cells 1 GW? (2010) 0 E-Ton 300 MW (2009)
- Conergy 250 MW (2008) *o* JA Solar 275 MW (2008)



PV Production and Installed Capacity Are Taking Off

Source: Prometheus Institute and Photon Magazine numbers for worldwide capacity and projects underway. Let's go back to slide 12 – off the chart! Plus 60%/yr annual average growth rate; much faster in recent years

Grid Parity Accelerates at \$4/Watt



Note: if new resource options – like nuclear – cost 12-16+ cents/kWh, then Seattle and Fargo look like Boston!

2015 residential installations without incentives and <u>aggressive</u> increase in electricity prices

- Attractive in about 450 of 1,000 largest utilities, which provide ~50% of U.S. residential electricity sales.
- 91% of sales (in nearly 950 utilities) have a price difference of less than 5 ¢/kWh between PV and grid electricity.
- Across most of the highest U.S. population areas, PV is cheaper than grid electricity.

In the last six months...

- Nearly all major PV manufacturers are sharing quantified plans for achieving grid parity ~ 2010
- Nanosolar announces 1 GW/yr CIGS production tool for \$1.65 million (10-30 MW/yr is typical)
- Big utilities are jumping in
 - Iberdrola builds wind, PV, and solar thermal (Spain)
 - Eon/Schuco and Enel/Sharp building thin-film plants in Germany and Italy, respectively
 - Endesa building PV plant with Isofoton in Spain
 - Electricite de France takes major stake in Nanosolar
 - PG&E announces 800 MW PV project for 12 cents/kWh
 - SCE rate-basing 50 MW/yr at \$3.50/watt installed
 - Long Island Power Authority 50 MW solicitation
 - PSE&G announces major PV financing program

The Bottom Line

- Coal and nuclear power are expensive
- Financial crisis hurts all large capital intensive options
- Efficiency remains the cheapest supply option
- PV is at or near parity with new resources in most of the world, and is rapidly nearing grid parity
 - Utility eligibility for solar ITC is big, especially with collapse of tax equity market
 - Every utility and policy maker needs to stay on top of this technology

Supplemental Slides

Reprocessing Is Still Expensive

Fuel cycle steps	MIT	This analysis
Uranium	\$30/kg	\$300/kg
Enrichment	\$100/SWU	\$140-340/SWU
Fabrication	\$275/kg	\$275/kg
Disposal	\$400/kg	\$400/kg
Reprocessing	\$1000/kg	\$1500-2000/kg
Fuel cycle cost		
Open	0.5 cents/kWh	1.6-2 cents/kWh
Closed	2 cents/kWh	3.4-4.3 cents/kWh
Differential	4x	2-3.5x

Approximately 5.25 kgs of spent fuel must be reprocessed to obtain 1 kg of MOX.